Bordetella Adenylate Cyclase-Hemolysin Toxins

نویسنده

  • Nicole Guiso
چکیده

Adenylate cyclase-hemolysin toxin is secreted and produced by three classical species of the genus Bordetella: Bordetella pertussis, B. parapertussis and B. bronchiseptica. This toxin has several properties such as: (i) adenylate cyclase activity, enhanced after interaction with the eukaryotic protein, calmodulin; (ii) a pore-forming activity; (iii) an invasive activity. It plays an important role in the pathogenesis of these Bordetella species responsible for whooping cough in humans or persistent respiratory infections in mammals, by modulating host immune responses. In contrast with other Bordetella toxins or adhesins, lack of (or very low polymorphism) is observed in the structural gene encoding this toxin, supporting its importance as well as a potential role as a vaccine antigen against whooping cough. In this article, an overview of the investigations undertaken on this toxin is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Post-Translational Modifications and Cytotoxic Properties of the Adenylate-Cyclase Hemolysin Produced by Various Bordetella pertussis and Bordetella parapertussis Isolates

Bordetella pertussis and Bordetella parapertussis are the causal agents of whooping cough in humans. They produce diverse virulence factors, including adenylate cyclase-hemolysin (AC-Hly), a secreted toxin of the repeat in toxins (RTX) family with cyclase, pore-forming, and hemolytic activities. Post-translational modifications (PTMs) are essential for the biological activities of the toxin pro...

متن کامل

Characterization of adenylate cyclase-hemolysin gene duplication in a Bordetella pertussis isolate.

We describe a clinical isolate of Bordetella pertussis, the agent responsible for whooping cough, composed of at least two clones harboring one or two copies of the cya locus encoding one of the major toxins, adenylate cyclase-hemolysin. No difference was observed between the two clones in murine and cellular models, probably due to the high instability of the cya locus duplication.

متن کامل

Role of adhesins and toxins in invasion of human tracheal epithelial cells by Bordetella pertussis.

Bordetella pertussis, the agent of whooping cough, can invade and survive in several types of eukaryotic cell, including CHO, HeLa 229, and HEp-2 cells and macrophages. In this study, we analyzed bacterial invasiveness in nonrespiratory human HeLa epithelial cells and human HTE and HAE0 tracheal epithelial cells. Invasion assays and transmission electron microscopy analysis showed that B. pertu...

متن کامل

Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo.

Bordetella pertussis induces in vitro apoptosis of murine alveolar macrophages by a mechanism that is dependent on expression of bacterial adenylate cyclase-hemolysin. Using a murine respiratory model, we found in this study that intranasal infection with a parental B. pertussis strain, but not with an isogenic variant deficient in the expression of all toxins and adhesins, induced a marked neu...

متن کامل

Stimulation of Bordetella pertussis adenylate cyclase toxin intoxication by its hemolysin domain.

The internalization of the N-terminal catalytic domain of Bordetella pertussis adenylate cyclase toxin (ACT) across the cytoplasmic membrane has been considered to occur independently from protein-protein interactions which can lead to oligomerization required for hemolytic activity by its C-terminal hemolysin domain. Here we report that when added in excess, this hemolysin domain stimulates th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017